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INTRODUCTION. 

In this paper, a process is given which leads to four general methods of 

summation of divergent series, and each of these methods includes as special 

cases several of the known methods. These latter are sufficiently indicated 

with their connections in the course of the discussion. It is shown that, 

in accordance with these general methods, every convergent series is sum- 

mable and the generalized sum is equal to the ordinary sum; whilst a properly 

divergent series is not summable by these methods. Uniform summability, 

and the continuity of uniformly summable series and their term by term 

integration and differentiation, are discussed. Of the general theorems ob- 

tained, applications are made to the particular methods of CrsAro, RI&Esz, 

Boret, LeRoy, and the so-called Cesaro-Riesz methods of Harpy and Cuap- 

MAN. The methods of proof employed throughout are simpler than those 

hitherto used. In this way the essential properties of the various known 

methods are brought out, and greater uniformity of treatment is secured. 

ill 
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SOME GENERALIZATIONS IN THE 

THEORY OF SUMMABLE DIVERGENT SERIES 

CHAPTER I. 

THE PROBLEM OF DIVERGENT SERIES. 

1. Let us first seek what meaning can be assigned to an infinite series. In 

the first place we are to understand by an infinite series a symbol such as 

(1) ao tay tag +s tan t+: = dian. 

To assign a meaning to this symbol, the simplest and most natural way is to 

form the expression 
n 

Si De Ay; 
v=0 

and when lim s, exists, to take this value, the so-called sum of the series, as 

a prettier the series wherever the series occurs in calculations. Thus the 

method of convergent series is simply a particular method of associating a 

definite number with the series, and using this number in place of the series 

in calculations. This limit, lim s,, however, only exists for certain series, 

while there are many series, Heneecalicd divergent series, for which this limit 

does not exist. In order to be able to use such series, we must then find some 

method by which we can associate a definite number with the series, so that 

we can use this number in place of the series in calculations. 

Our problem of divergent series is then to associate with such a series a 

number, which we call the Swm* of the series, which should be defined in such 

a way that the resulting laws of calculation agree as far as possible with those 

of convergent series. If the series has variable terms, we wish to associate 

with it, not a number, but a function, which shall satisfy the above condition. 

Any definite method by which we can associate with a given series a Sum is 

called a method of summation. 

2. CHAPMANT has stated a “general principle of summability ” for any 

* For convenience, we write the sum of a convergent series, in the usual sense, with small 

s , while this associated number here referred to, we write Sum, with capital S. 

t Quarterly Journ. of Math., Vol. 48, p. 4. 
1 . 



2 LLOYD L. SMAIL: SOME GENERALIZATIONS IN THE 

infinite form as follows: ‘‘ When the sequence of finite forms, which defines 

or generates an infinite form, does not tend to a limit as the variables tend to 

infinity in the assigned order through the sequences of values constituting the 

domains of these variables, then we may agree that the number represented 

by the given infinite form is to be the limit of a sequence of associated finite 

forms, different from the members of the original sequence; the second sequence 

must of course be judiciously chosen, so that the limit to which it tends is 

usefully related to the original sequence. The number of its variables may be 

the same or greater than the original number; and the additional variables, 

if any, may or may not be required to tend to infinity.” 

Applying this to infinite series, we shall form sequences involving the terms 

of the given series, but which have limits even when the sequence so, 81, 

Sa, ***, 8, *** has no limit. We shall not only form subsidiary sequences 

depending upon one index, but also sequences depending upon two indices 

(double sequences), and have simple and double limits of such sequences. 

An infinite series will then be said to be suwmmable by any particular method if 

the corresponding subsidiary sequence has a limit. 

If the terms of the given series are functions of a variable uw, then this series 

will be said to be uniformly summable with respect to u in an interval (a, b), 

if the subsidiary sequence converges to its limit uniformly with respect to wu 

in that interval. 

3. Methods of summation have been classified by CHAPMAN* into parametric 

and non-parametric. A method of summation is parametric if the associated 

sequence used to determine the Sum contains a parameter of some kind upon 

the values of which depend whether or not the series is summable. If the 

associated sequence contains no such parameter, the method is called non- 

parametric. 

4. As already explained, the Sum given by a method of summation is to be 

used whenever the given series is such that s, has no limit. Now s, has a 

limit for convergent series (in which case s, has a finite limit) and for the 

properly divergent series (where s, has the limit + © or — © ); our methods 

of summation are then designed primarily for the oscillating series. But con- 

vergent series and oscillating series may occur in the same piece of work, and 

so our methods of summation should be such that they will apply to convergent 

series and give a Sum equal to the ordinary sum. Likewise, when the methods 

of summation are applied to a properly divergent series, they should give a 

Sum equal to + © or — ©, according as s, has the limit + © or — o..” 

We formulate these requirements in the following conditions, which we call 

the conditions of consistency: 

(1) When the given series is convergent, the Sum given by any method of 

summation must exist and coincide with the sum. Moreover, if the method 

* Quarterly Journ. of Math., Vol. 48, p. 8. 
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is parametric, the Sum must exist and coincide with the sum for all values of 

the parameter for which the method is applicable; 

(2) When the given series is properly divergent, the Sum given by any 

method of summation must be + © or — ©, according as lims, is + © 
or — 0; n> 0 

(3) When the given series is uniformly convergent, it must be uniformly 

summable; and this must be so for every value of the parameter if the method 

is parametric. 



CHAPTER II. 

SoME GENERAL METHODS OF SUMMATION. 

ie] 

5. Having given a divergent series }>a,, we start with the expression 
0 

[n] 

(2) Do av fos 

where n is always taken positive, and [ n] denotes the greatest integer < n, 

and f, is a function of certain variables and parameters to be specified presently. 

We shall study the limiting properties of this expression, and find out under 

what circumstances these limits will satisfy the conditions of consistency. 

We first enunciate some of the cases which may occur and which we shall 

study: 

I. fy may be a function of n and also of a parameter k; then, keeping k 

fixed, we seek the simple limit 

[nj 
(3) lin) 20 ede (i ye) 

mo v=0 

II. f, may be a function of a variable 2; we then seek the repeated double 

limits 

(4) dina itn aia fy ces 
n> 7-H V=0 

(5) Habis SE i aM(dnt 
xr—> oO N—>0o v=—0 

or the Pringsheim double limit 

(6) lim Dw fe (2), 
n,z—>o v=0 

where n, x tend to © independently but simultaneously. 

III. f, may be a function of two variables n and p; we then seek the repeated 

double limits 
[n] 

(7) lim lim 2a fv (m, Dp); 
M— PO p—>o v=0 

(8) lim lim S aofe (m, Dp); 
pao n—>w v=0 

* The case x > 00 may be regarded as a general case, since any other, x — a, can be reduced 

to this by transformation. 

4 



THEORY OF SUMMABLE DIVERGENT SERIES. 5 

or we may seek the Pringsheim double limit 

[n] 
(9) lim Di avfo(n, p), 

n,p—>o v=0 

or we may seek the double limit along a path F 

n]) 

(10) lniaycad f(a n). 
n, ae v=0 

where n, p tend to © simultaneously though not independently, but in such a 

way that a functional relation 
Fi(n, p) =0 

holds between them.* 

In place of starting with the expression (2), we may start with the expression 

(11) Sect 
v=0 

where s» = >, a;. Then we have the case 
+1=0 

IV. f, may be a function of 2, and we seek the repeated double limits 

(12) lim lim See Gays 
IPO T—poO v= 

(13) lim lim Sie Cay. 
I—PO N=——poo v=—0 

Let us now examine each of these cases more in detail. 

Case I. 

6. Let f, (n, k) be defined for all positive integral values of v, including 0, 

for all positive values of n, and for a certain range of real values of the param- 

eter i. 

Suppose further that f, (n, &) satisfies the following conditions: 

1° Yee ONO ie ah ae for every v, n, k; 

2° when n and & are fixed, the sequence 

Jovtus sas ily Jo > Tipe 

is monotonic decreasing; 
3° hm fs.(7) ke): = 1 for v fixed; 

n—> 0 

4° fo(n, k) =1; 

5° lim fin (n, k) = 0. 
n—>o 

* See Harpy and CHapman, Quarterly Journ. of Math., Vol. 42, p. 187. 
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When limit (3) exists and has the value S: 

[n] 
(3’) lim Dla f,(n,k)=S8, 

— no v=0 

then we shall say that the series >> a, is summable (I) with Sum S. 
0 

We now proceed to show that this method of summation satisfies the con- 

ditions of consistency. It may be noted that this is a parametric method. 

7. Turorem 1. If the series ) ay is convergent with sum s, then 
0 

[7] 

(3) lim >) a fr (n, k) 
r—po v=—0 

exists and 1s equal to s for every value of k for which f, 1s defined; so that every 

convergent serves is summable (I) with Sum equal to sum, and part (1) of the 

conditions of consistency is satisfied. 

Put 

1—fy(n, k)=g (n, k), 

then by condition 1°, we have 

0z go (n, k) <= Ly 

by 2° the sequence go, 91, 92) ***» Jv, *** 18 monotonic, and by 3°, 

lim g, (”, kk) = 0. 
m—> 0 

Put 
[n] [n] [mJ 

G(n,k) = Do a go (n, k) = da, — 2 a fo (n, k). 

Then we have to prove that 

(a) lim G(n,k) =0. 
m— 0 

We may write 
N {n] 

(b) G(n,k) = Did» go + >, Qy Jo- 
o=0 v=N+1 

Let us consider first the second sigma of (6). By ABEL’s lemma,* 

[n] 
Yt g0(n,b)| 2 Ag <A, 

v=N+ 

where A is the upper bound of 
ff 

2s 
v=N+1 

*See Bromwicu, Theory of Infinite Series, § 23. 
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for 
r=N+1,N+2, seey [%), 

and g is the upper bound of the g, for 

Ui N+ Le re th [n]; 

by condition 1°, g = 1. Now since 2 a, is convergent, we can choose No so 

that A < e/2 for N > No, where «¢ is any arbitrarily small positive number. 

Hence 

(c) 

for N>Ny,n>N+1. 

Now consider the first sigma of (b). By condition 3°, when N is once fixed, 

for every given positive number e’, we can find an integer m, such that for 

n> MM, 
Q(n,k)<e fON ta Othe Peo 

Let m be the greatest of the finite set of integers mo, m1, --+, my; then for 

n>m, each 9,(n,k)<¢ (v=0,-:-,N). 

N N N 

Bae ge (m, b)]Z Dolan -t(n,k)< e > | a, | forn>m. 
v=0 »=0 o=0 

Choose 
j € 
e< WV ’ 

23° |a,| 
then 

a € 
(d) Do Oy Jo <9 for n> m. 

v=0 

From (c) and (d), we now see that 

|G(n,k)|<e for n> N’, 
where N’ is S$ No or m. 

Hence ds se 

lim urate k) =lim Da =s. 
2—>o v=0 2—>o v=0 

The above argument has not explicitly involved the value of k, so that the 

theorem is true for every & for which f, satisfies the conditions of § 6. 

It may be remarked that all the conditions of § 6 are not required for this 

proof; we need only conditions 1°, 3°, and 2° can be replaced by the require- 

ment that the sequence (f, ) be monotonic. 

8. THEorEM 2. [If the series >) ay (uw) is uniformly convergent with respect 
0 

[n} 
to u in the closed interval (a, b), with sum s(w), then 2, a, (w)fy(n, k) tends 

o=0 
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to its lumit s (uw) uniformly with respect to u in the rnterval (a,b); so that at 

uniformly convergent series 1s also uniformly summable (1), and part (3) of the 
conditions of consistency is satisfied. 

Using the notation of § 7, we must prove that G(n, k, uw) > 0 uniformly 

in (a,b). We find, as before, 

[n] 

de (u) “gs (n, B)| Li Atw) Oma), 
v= N+ 

but since 2a, (wu) is uniformly convergent, we can find No such that 

A(u) <¢/2for N > No and for every uin (a, 0). We then have 

[7] 

Dy te (1) go (mB) | <§ 
v=N+1 

(c) 

for N > No and for every u in (a,b). 

As before, we find 

N N 

Day Ca) de (mye) — est aay forn > m. 
v=0 o=0 

Let K be the upper bound of 
N 

2 | a (u) | 

for win (a, b); take 

Weenie 
cone 

then 
N € ‘ 

(d) Dae (a) Go (1, Ki) <5 for n> m, 
v=0 

and for every win (a,b). 

Hence G (n,k,w) > 0 uniformly with respect to uw, and our theorem follows. 

9. THEoREM 3. [If the series >. dy 1s properly divergent, so that 
0 

lms, = +, 
m—>o 

then 
[n] 

lim laf, (n, k)= +0; 
r—>o v=0 

hence a properly divergent series 1s not summable (1) with finite Sum, and part 

(2) of the conditions of consistency rs satisfied. 
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We have 
[n] 

2 anf = So fo + (81 — 80) fr + (82 — 81) fo + +++ + (8tny — 8tny-1) f tn 

= 80(fo—fi) + 81 (fi— fe) + 2 + Stn finer — Sin) +8 ta Sin - 
[n] [n]—1 

(14) didn fo= Ly 8 (fo — fosr) + Sim fim 
Since 

lims,= +o, 
N—>O 

if K is any arbitrarily large number, we can find m such that we can put 

%=K+1, for » > m, where r, > 0. 

Put 

ts — fost = ve 

Then (14) becomes 

[n] m [n]—1 

Do ayfo(n,k) = 2) sehy(n,k)+K 2) hy(n,k) 
v=0 v=0 v=m+1 

[n]—i m 

+ De toby (mk) + sim fim (mk) = 2a (80 — K) hho (m, he) 

[nJ—1 [m]—1 

+K a hy(n, k) + De Toho (n, k) + sinjfinj (nm, kb). 
hee v=m+ 

But 
[n]—1 

yD h(n, k) = Cfo Su) eC fi fe) 8 Hel Pieetiet ray) = fo — fini. 

[n] m 

(a) .’. 2 a fo (n, k) = 2 (% — K) hy (n, k)+K {fo(n,k) —fin (nm, k)} 

[n]J—1 

+ De Ty hy Cir, k) ar Siny Fin} (n, eles 
v=m+1 

By condition 2°, : 
he Cus ky is S03 

by 3°, 
lim hy (n, &) = 0; 
no 

byt: ih: 

fin) (n, k) S 0. 

Using these results, and conditions 4°, 5°, we get 

[n] [n]—1 

lim Diafp(n,k)=K+lim ) nh (nik) + limsm fim (n,k). 
n—>n v=0 ro v=m+1 r™—n 

Ser 

Since K is arbitrarily large, our theorem follows at once. 
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For this proof, all the conditions 1°-5° of § 6 are required. 

10. TuEorem 4. If the series Dla, (uw) is uniformly summable (1) with 
v=0 

respect to u in an interval (a, b), with Sum S (uw), and of the terms a, (u) are 

continuous functions of u in (a, b), then S (u) ts a continuous function of u 

an (a,b). 

Since 
[n] 

S (u) = lim Yay (u) fe (nm, k) = Xa (1) fo(n, ), 

it follows that S (uw) is the sum of a uniformly convergent series of continuous 

functions, and hence, by the properties of uniformly convergent series, S (~) 

is continuous. 

The theorem may be proved directly as follows:* 

Put : 

24% (u) fy (m, ke) = 8, (wu). 

We have 

|S(w+th)—S(u)| S| S(uth)—S8,z(uth)|+|S, (uth) 

— Sn (a) | + | Se (a) — 8 Cu) |. 
lim 8, (u) = §(u) 

Now since 

and the approach is uniform with respect to wu in (a, b), we can find N such 
that for n> JN, 

|S (u) — 8, (u)| <3, 
and 

|S(u+h)— 8 (uth)|<z, 

where ¢ is any arbitrarily small positive number. 

Again, since S, (w) is a sum of a finite number of continuous functions, we 

can find 6 such that 

|S, (ut hb) — Sn (u)| <5 for |h| <6. 
Hence we obtain 

|S(u+th)—S(u)|<e for |h| <6, 

which shows that S (w) is continuous. 

11. TuzorEem 5. If the series Dia, (u) ts uniformly summable (1) with 
0 

respect to u in the closed interval (a, b), with Sum S (u), and af (¢1, ce) as 

* See CHapMAN, Quarterly Journ. of Math., Vol. 48, p. 12. 
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an interval contained in (a,b), and if the terms ay (uw) are integrable in (¢1, C2), 

then the series obtained by integrating the given series term by term over the range 

(¢1, C2) is summable (1) , and its Sum is { " S(u) du. 

We can write 

S(u) = 8, (u) + 6, (u), 

where 6, (wu) is such that we can find N so that forn > N, 

| 6, (uw) | < €; 

however small ¢ may be, for every wu in (a, 6) and 

{n] 

Sa Cw) = 2% (w)fy(n,k). 

JS (wu) du= JS (u) dub f 8, (1) du 

= vf (n,k)- i (wu) du +f (u) du. 

(Pe (u) du 

ey ian 6, (u) du = 0, 

But 

Sf" l (uw) |-[dul<e(a—a), (n>), 

rn cy 

and we have 
[7] cg Ce 

lim of, (nk) J ay (u)du= ff S(u) du. 
n>o v=0 Cy cy 

Hence the series >a dy (uw) du is summable (I) with Sum f S (uw) du.* 
0 cj cy 

Observe that this proof holds for any function f, (n, k), such that S, (wv) 

approaches a limit S (w) uniformly, even though it should fail to satisfy all 

the conditions 1°-5° of § 6. 

12. Turorem 6. If the series >) a,(u) is summable (1) with Sum S (u), 
0 

then if the series > a, (w) obtained by differentiating term by term the given series 
0 

ws uniformly summable (1) with respect to u in an interval (a, b), with Sum 

a (u), we have 

go (u) = £8 u). 

* See CHAPMAN, Quarterly Journ. of Math., Vol. 43, pp. 12-13. 
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By the preceding theorem, the series 

rs a 
4 Cy 

where c; and wu are in the interval (a, 6), is summable (1) with Sum 

fs (wu) du. 

That is, 

lim Yefe(m,k) [at (a) du= foo (a) dus 

or since Te | i 

fa, (1) du = ay (0) = a5 (01), 
we have H 

(@ tim 2 {ae (a) = a6 (1) Jo (mk) = fa (a) du, 

But since > ad, (uw) is summable (I) with Sum S (wz), the left hand side of 

(a) is equal to S (w) — S(e1), or 

(b) fo (uw) du= 8 (u) — 8 (er). 

This equation shows that 
d 

o (uw) = aa S (uw) . 

Case II. 

13. Let f, (x) be defined for every positive value of x, and for 

saat ike Mee a 

Suppose Aurthen that f, (x) satisfies the following conditions: 

Lf OS fee lie for every 0, 2; 

2° when 2 is fixed, the sequence fo, fi, ---, fv, «++ 18 decreasing; 

3° lim f,{2) = 1 for v fixed; 
a 0 

HN lim lim f, (2) = 0. 
L—PO N—poO 

14. We shall first show that limits (4) and (6) cannot give rise to methods 

of summation of non-convergent series. 

We have, by condition 3°, 

lim any: (e)'= es 
%—>o v=0 
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and 

lim lim Saf (x) = lim Syn 
Io 2H v=0 n—>oco v=0 

Hence, limit (4) can only exist when the series >> a, is convergent, and will not 
0 

give a method of summation of non-convergent series. We need then consider 
limit (4) no further. 

From the well-known theorem:* 

Bod § § bom Ap, q exists and yl eee Gp, q exists for every q, then 
P;I-FR 

lim (lim ay, g) = Ae Og ais 
qo p=—>w —> 00 

we see that if lim a», , exists for every g, then lim ap, , can only exist when 
poo P,I->a 

lim lim ap, q exists. 
Is p> 

Then since lim y dy fy (2) exists for every n, it follows that the Pringsheim 
z—>o0 v=0 

double limit 

(6) lim x Gy to tan 
Nn, z—>o v=0 

can only exist when the repeated double limit 

(4) lim lim >> a, Tete 
Io r—>0 v=0 

exists, i. e., only when the series 2 a, is convergent. Hence the limit (6) 

will not apply to non-convergent series, and we need not consider it further. 

15. When the limit (5) exists and is equal to S, 

(5’) lim lm oy dy fy (@) = 
I—>O No v=0 

we shall say that the series 2 a, is summable (II) with Sum S. 

We shall now show that this method of summation satisfies the conditions 

of consistency. 

16. TuEorEM 7. [If the series >, dy is convergent with sum s, then 
0 

(5) lim lim x ag bei Ct:) 
Z—>0 N Po v= 

exists and is equal to s; that is, every convergent series is summable (I1) with Sum 

equal to sum, and so part (1) of the conditions of consistency is satisfied. 

*See Nipisen, Lehrbuch der unendlichen Reihen, p. 76. 
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Put 

L — fo (2) = go (2)5 
then from conditions 1°, 2°, 3°, it follows that 

0 Sig (2) Si 

for every v, 2, that the sequence go, g1, -**, Jv, *** 1S monotonic, and that 

lim g, (x) = 0 
L—>O 

for v fixed. 

Put 

G(n,x) = do a Jv (x), 

then since 

Gin, x)= dia a do a fo (x); 

we must prove that 
lim lim G(n,xz) = 0. 
Z—>O N—> 

We shall first show that the Pringsheim double limit 

lim G(n,z)=0. 
n, Z—>@ 

Writing G (n, x) in the form 

G (n, x) = dia Jo (t) + 2d qu (2X), 

we first apply ABEL’s lemma to the second sigma, and obtain 

n 

DB: Qy Jv Ue) 
v=N+1 

<A-gSA for every 2, 

where A is the upper bound of 

r 

ys Ay 
N+1 

for r=N+ 1): om, 

and g is the upper bound of the terms g, for 

D = AN ey sie itt, 

so that g < 1. Since 2 a, is convergent, we can choose N> so that, for every 

e, for N > No, we have A < e€/ 2; hence 

(a) ey Ay Jo (LX) < ; 

for N > No and for every 2. 
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Now keeping N fixed, for any given e’, by condition 3° we can find an in- 

teger X, such that for 2 > X,, we have g, (2) < e forv=0,1,-:-,N. 

Let X be the greatest of the finite set of integers X,, (v= 0,1, ---, N), 

then for x > X, we have each g, (x) < e (v=0,---, MN). 

N N 

gv (@) Sel el > ge (ey < Dol ae forays Xe: 
v=0 v=0 

If we take 

A: pz tat hickiay 

22. | ae | 
we get 

(b) Jv (@) < for c> X. 

From (a) and (b), we now obtain 

\G(n, 2) |<e forn>N).+1,2>VX, 
so that 

lim G(n,2) = 0. 
N, > 

We now apply the theorem (already quoted in § 14): 

“Tf lim ap, q exists and lim Ap, q exists for every q, then 
P,I->n D> 

3? lim lim ay, ¢ = lim ap, gq. 
gH Pw P, Ia 

Making use of the theorem:* A convergent series remains convergent if its 

terms are each multiplied by factors which form a bounded monotonic sequence, 

we see that the series 53 Qy Jy (x) is convergent and lim G(n,2) exists. Hence 

by the theorem just WMA we have fis 

lim lim G(n,z) = 0, 
r—>0 n— o 

and 

lim lim Das fe (2) =) lint Ee a 
t—>on—>wo v=0 n—>o v=0 

Not all the conditions of § 13 were used in this proof; we need only 1°, 3°, 

and in place of 2° we need only require the sequence (f, ) to be monotonic. 

17. TuEorEm 8. [If the series >) dy is properly divergent, so that 
0 

lims,= +, 
n—> 0 

*See Bromwicu, Theory of Infinite Series, § 19. 
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then 

lim lim Dime ft (2) ==. ..co 
rI—> 0 n> 0 v=—0 

that 1s, no properly divergent sereis can be summable (II) with finite Sum, and 

hence part (2) of the conditions of consistency 1s satisfied. 

Starting with equation (14) of §9, and proceeding exactly as in $9, we 

arrive at the equation corresponding to (a): 

(2) Lasgo (2) = (4 — K) be (2) +K (fol) —fa() 

“ a be (2) cee 
where 

hy (x) = fr (2) Gere Pe co el 

We find from the conditions of § 13, that 

him ‘hy C2) =0;, lim fo («) =1, lim lim f, (2) = 0. 
r—> 0 zZ—> 0 I—>D NO 

. lim lim Say (2) = KC + am lim Ste he (1) + on ane By Fake 
z—>0onN—>w v=0 02> oO v= 

But since r, > 0, hy (x) > 0, and s, > 0, fn (2) = 0, we have 

n—1 

lim lim Dir ky (2) >0, ~~ lim lim sn fn (a) > 0, 
I> ONS w r—>0nN—>w v=0 

Selim Nimo Dent) Ce ice ee 
IO Nw v= 

Since K can be taken as large as we please, our theorem follows at once. 

18. Before proceeding to show that this method of summation satisfies 

part (3) of the conditions of consistency, it will be necessary to make the 

notion of uniform summability (II) more precise; for this notion involves 

uniform approach to a repeated double limit. 

A definition of uniform approach to a Pringsheim double limit is easy to 
formulate. If ap, , (wu) is a function of uw, and if for each value of wu in an 

interval (a, 6), the Pringsheim double limit 

Lima ag ig 6) 
DP, IPR 

exists and is equal to a (w), then we shall say that ap, . (w), approaches its 

Pringsheim double limit a (u) unzformly with respect to win the interval (a,b), 

if for any positive €, two integers P, Q can be found such that for every 
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[a.(u) = ay, 9(u)|<e 

for every value of wu in (a, 6b). 

19. THEorEM 9. If ay, g(u) approaches its Pringsheim double limit 

lim @), (wu) =a(u) 
P, I—>o 

uniformly with respect to u in an interval (a, b), and wf for each q, ap, g (u) 

approaches a simple lumit 

lim @p, g (U) = aq (u) 
p>o 

uniformly with respect to u in (a, b), then ag (wu) approaches the simple limit 

lim ag (uv) =a(u) 
I> 

uniformly with respect tou in (a,b). 

By hypothesis, we can find numbers P, Q such that 

(a) | a (u) — ap, @(u) | <5 

for p > P, q> Q, and for every u in (a, 6); also we can find a number P, 

(depending in general upon q) such that 

(b) | ap, @ (uw) — ag (u)| <5 

for p > P; and for every u in (a, b). Adding (a) and (b), we get 

|a(u) —a,(u)|<e 

for q > Q and for every u in (a, 6), which gives the result stated in the 

theorem. 

20. The theorem just proved suggests a definition of uniform approach to a 

repeated double limit, which will be useful in our later discussion of uniform 

summability. 

If for each value of w in the interval (a, b), the repeated double limit 

lim lim ay, g (uw) 
g—>% p> 0 

exists and is equal to a (wu), then we shall say that ay, , (uw) approaches its 

repeated double limit a (wu) uniformly with respect to wu in (a, b), if dp, g (u) 

approaches its simple limit 

lim dp, g (U) = dq (%) 
p> e 
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uniformly with respect to wu in (a, b), and if a, (w) approaches its limit 

lim ag (u) = a (wu) 
q—>~ 

uniformly with respect to win (a, 6). 

Our definition of uniform summability (II) will then be: If > a (u) Isto 
v=0 

approaches its repeated double limit 

lim lim Yay (14) fo (2) = S (u) 
t—>oOn—>wo v=—0 

uniformly with respect to w in an interval (a,b), then the series >, a, (w) 
0 

is said to be uniformly summable (II) with respect to u in (a, Db). 

21. We are now in a position to discuss the uniform summability (II) of a 

uniformly convergent series; but before entering upon that, we shall first 

prove an auxiliary theorem, in order not to ee the argument later. 

THEOREM 10. A uniformly convergent series Da, (w) remains uniformly 

convergent of tts terms are each multiplied by factors gy , provided that the sequence 

(gy) ts monotonic, and that | gy | < a constant c.* 

Since the sequence (g») is monotonic and | g, |< c, gy must approach a 

limit, call it g. Put b, = g — g» when (g,) is an increasing sequence, and 

by = J» — g when (gy) is decreasing. ‘Then the sequence (b,) is monotonic 

decreasing and approaches the limit 0. Since 

Ay (U) + Jv = Ay (U) + 9 — ay (u) + dy or Ay (Ut) * gt dy (ut): Db 

we need only prove that >, a (w) - by, is uniformly convergent. If A (wu) 
0 

is the upper bound of 

ie (uw) 
m+1 

r=m 1, *++, m+ Dp, 

we have by ABEL’s lemma 

for 

m-+p 

Ds Gy 
!m+1 

vy] < A(u) + bia << A (u) > do. 

But since >, a, (w) is uniformly convergent, we can find M such that for 
0 

m > M, we have 

(2) 
* This is a generalization of the theorem of § 19 in Bromwicu, Theory of Infinite Series. 
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however small e may be, for every u in an interval (a,b). 

m+p 

ae (u)-byl|<e 
m+1 

. 

oe 

for m > M and for every positive integer p, and for every wu in (a, Db). 
i) 

Hence the series >, a, (u) by is uniformly convergent in (a, b). 
0 

22. THEOREM 11. [If the series D> dy (u) ts uniformly convergent with respect 
0 

to u in the interval (a,b), with sum s(u), then >, d (wv) - fo (x) tends to rts 
v=0 

repeated double limit s (uw) uniformly with respect to u in (a, b); that is, a uni- 

formly convergent series is also uniformly summable (I1), and so part (3) of the 

conditions of consistency is satisfied. 

We shall first show that >. a, (uw) - fy (a) approaches its Pringsheim double 
v=0 

limit s (wz) uniformly with respect to u in (a, b). 

Using the notation of § 16, we have to prove that numbers NV, X can be 

found such that for everyn > N,2x>VX, 

|G(n,2,u)|<e 
for every u in (a, b). 

As in § 16, we find by ABEL’s lemma 

SA(u)-gS Alu), De (W) gv (x) 

for every x and for every wu, where A (uw) is the upper bound of 

D a, (u)| for r= N+1,>°-:-,n, 
| v1 

and g is the upper bound of the terms g, for v= N+ 1, ---, n. Since 

> a, (w) is uniformly convergent, we can find Ny such that for N > No, we 
0 

have A (uw) < e/2 for every win (a,b). 

n 

| Da (u) m (2))<§ 
v= 

(a) 

for N > No, for every x, and for every u in (a, Db). 

As before, (§ 16), 

| N | N 
2 dy (W) gy (@)/ < e' De] ae (w) | for every z > X. 
v=0 v=0 
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N 

Let K be the upper bound of >» | a (w) | for win (a, 6); and take e’ < ae 
0 

Then 

(0) foe 
2 2 dy (w) go (2) 

for « > X and for every win (a, b). 

Hence 

<e€ Be Cie 

for n> N> No, «> X, and for every u in (a, b); that is, G(n, z, uw) 

approaches its Pringsheim double limit 0 uniformly. 

J» (a) evidently satisfies the conditions of Theorem 10, so that, since Za,(w) 

is uniformly convergent, Das (nie Jv (x) is also uniformly convergent; that 
0 

is, the limit 

lim >) dy (w) go (2) 
2—>o v=0 

is approached uniformly with respect to uin (a,b). Now applying Theorem 

9, we see that the limit 

lim lim >) a (w) gy (2) 
2—>DO N—>wO v=0 

is approached uniformly with respect to wu in (a, 6). Our theorem then 

follows. 

23. THEOREM 12. Jf the series do a (uw) ts uniformly summable (II) with 
0 

respect to u in an interval (a, b), with Sum S (uw), and of the terms a, (uw) are 

continuous functions of uin (a,b), then S (u) ts a continuous function of u 

an (a,b). 

Put 

2a (u) fo (2) = Sp, 2(u), 

and 
lim 8, , (46) = Sz (12); 
n—>« 

then 
lim S,.(a) = 8 (a). 

We have a 

S(ut hy S(ujl<(S (uth) — S.(m bho) sae 
(a) — Si,2(uth)|+|S8,,2(uth) —S,,2(u) | 
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From the definition of uniform summability (II), it follows that, for any 

given e€, we can find X such that for a > X, we have 

(b) | Sz (uw) — S(u)| <5, 
and 

(0) |S(w+h)—S.(u+h)| <5, 
and that we can find N such that forn > JN, 

(d) [Soya (4) = See) | <5) 
and 

(e) |S2(u+ hk) — Sp, 2(u+h)| <5. 

Since S,, - (w) is a sum of a finite number of continuous functions, we can 

find 6 such that for | h| < 6, we have 

f) | Sn, 2(u-+ h) — Ss, 2(u) | <z. 
Combining (b)-(f), we get 

|S(uth)—S(u)|<e for |h| <6, 

from which the theorem follows. 

24. TuHErorEM 13. If + ay (uw) is uniformly summable (II) with respect to 
0 

u in an interval (a,b), with Sum S (u), and «f its terms dy (u) are integrable, 

then the series obtained by integrating the given series term by term with respect to 

u over a range (C1, C2) included in (a, b) 1s summable (II) with Sum f S(u)du. 
1 

Using the notation of § 23, since 

lim S,, . (4) = Sz (u) 
n—> 

and the approach is uniform with respect to uw in (a, b), and since 

lim Sp, 2(u) = Di ds (u) fo (a), 
ro 0 

it follows that the series 

8. (u) = Da (u) fe (2) 

is uniformly convergent in (a,b). Hence 

['s. (u) du = Di (2) Joa (w) du. 
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via ce Cc cg cg 

”. lim lim hola) f a,(u)du = lim Site) f d)(u)du=lim | S,(u)du. 
L— HON PH v=0 cy z>o 0 cy m—>ae cy 

Then, to prove our theorem, we must show that 

lim ‘S.(u)du= [S(w) du. 
70 cy 

where yz (wu) approaches its limit 0, as e—> ©, uniformly with respect to 

uin (a,b); we can then find X such that fora > X, 

We can write 

| nz (u) | <e for every win (a,b). 

[rs (w) du = es (1) due [ne (w) du. 

fone (w) du 

Cc 

re PARC Evi ty ew ck SR Raley Re ‘S.(u)du= ff San 
Z—>o eo cy LPH Uc} 

=f lnz(u)|-|dul|<e(e.—c) forz>X. 

25. THEOREM 14. If > a (u) is summable (11) with Sum S (u), and af 
0 

the series >. a’, (w) obtained by differentiating the given series term by term with 
0 

respect to urs uniformly summable (II), with Sum o (uw), then 

d 
(uu) = a SC). 

The proof is practically the same as that of § 12. 

Case III. 

26. Let f, (x, p) be defined for all positive values of n, , and for 

ve Onuly a ete Ls 

and let 

fu (nm, p) = 0 for v>n. 

Suppose that f, (”, p) satisfies the following conditions: 

12 Oi St 0 Sel: for every 0, 2, Dp; 

2° when n, p are fixed, the sequence fo, fi, ---, fy, °-+ is decreasing; 

3° lim f, (n, p) = 1, and when WN has been fixed, we can choose no so that 
p> 
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fo (n, p) > 1 uniformly for 
aier Oi ely erases N, n = N09; 

4° lim lim f, (n, p) = 1 for v fixed; 
p> 0 n> 

aa lim f,(n,p) = 1 for »v fixed, for certain paths F; 
nha oo 

6° lim lim fin} (n, p) = 0; 
pron >o 

co lim fin (n, p) = 0 for certain paths F. 
n, p—>0 

F 

Harpy and CHApMAN* have shown that the limits (7) and (9) can only 

exist when the given series 2 a, is convergent, so that they will not give rise 

to methods of summation of non-convergent series. We need not consider 

them further. 

When the limit (8) exists and is equal to S: 

[7] 
(8’) lim lim laf, (n, p) = 8, 

pn n> © v=0 

we shall say that the series 2 a, is summable (III A) with Sum S. 

When the limit (10) exists, with the value S: 

[m] 
(10’) lim Daf, (n,p)=S8, 

n, de v=0 

we shall say that the series 2 a, is summable (III B) with Sum S. 

We shall now show that both these methods satisfy the conditions of con- 

sistency. 

27. TuEorEM 15. [If the series >) a, is convergent with sum s, then it is sum- 
0 

mable (III A) and also summable (III B) with Sum equal to s in both cases, so 

that part (1) of the conditions of consistency rs satisfied for both methods. 

Harpy and CHApMAN have proved} that when 2 a, is convergent with sum 

s, then 
[n] 

lim wae (n,p)=s. 
Nn, p—> wo v=0 

It follows at once that the limit (10) taken along any path F will be equal tos. 

Since f,(n, p) Z1, the series >, a, fo (nm, p) is convergent, so that 
0 

[n] 
lim >) af, (n, p) exists. Then from the theorem on double limits quoted 
n—>o v=0 

in § 14, we see that the limit (8) exists and is equal to s. 

* Quarterly Journ. of Math., Vol. 42 (1911), p. 202. 

1 Quarterly Journ. of Math., Vol. 42 (1911), p. 202. 



24 LLOYD L. SMAIL: SOME GENERALIZATIONS IN THE 

28. TurorEM 16. If the series >) a,(u) is uniformly convergent, with sum 
0 

s(u), in an interval (a, 6), then it is also uniformly summable (III A) and 

(III B) with respect to win (a, b), and part (3) of the conditions of consistency 

as satisfied for both methods. 
[n] 

We shall first prove that >. a, (w) fy (n, p) approaches its Pringsheim double 
v=0 

limit s (wv) uniformly with respect to u in (a, b). 

If we put 

1—f, (1, p) = go (nN, DP), 
and : 

[vw 

G(n,p,u) = Led (u) gv (n,p); 

we must prove that numbers NV, P can be found such that for n > N and 

p> P, we have 

|G(n,p,u)|<e 
for every u in (a, Db). 

Just as in § 22, we have 

{n] 

2 ae (1) go (n, D)| ZA (uy ig ra 0s), 
v= 

for every p and wu, where A (uw) and g are defined as before. Since Dare 
0 

is uniformly convergent, we can find No such that A (w) < €/2, and there- 

fore 

(a) 
[n] 

Bas (x) oe (m, B)|<§ 
N+1 

for N > No, for every p, and for every u in (a, b). 

Now when N is fixed, by condition 3° we can choose no, po such that 

|gv(n,p)|<e forv=0,1,---,N, n> mm, p> po; hence 

2% (wu) gp (n, p)|< 2 | dy (uw) | (n>n0,p> po). 
N 

Let K be the upper bound of >) | a, (w)| for win (a, b), and take e’ < €/2K. 
0 

Then 

(0) 
N P 

Yau (u) m (, 9)]<§ 

for n > m, p > po, and for every u in (a, b). 

(a) and (b) then give : 

(c) |G(n,p,u)|<e 

forn > N’, p> po, and for every wu in (a, 6), where N’ is the greater of No 

and no. 
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(n] 

It follows at once from the result just proved that >) a (u)f,(n, p) ap- 
v=0 

proaches its double limit along a path F: 

mz) 

li 
Ms 

nee 2, (wu) fo (nm, p) = 8 (u) 

uniformly with respect to wu in (a, 6); so that the part of our theorem which 

relates to the method (III B) is proved. 

Using Theorem 10, we can readily show, as in § 22, that as n>, 
[7] 
> ay (u) fy (n, p) approaches a limit uniformly with respect to u in (a, 6). 
o=0 

Then by Theorem 9, it follows from the result obtained in the first part of 
[rn] 

this section, that >) a, (uw) fy (n, p) approaches its repeated double limit 
v=0 

[1] 

lim lim >) a (wv) fy (n, p) = 8 (u) 
po n—>0 v=0 

uniformly with respect to u in (a, 6); so that the part of our theorem which 

refers to the method (III A) is proved. 

29. THEorEM 17. If the series >. dy is properly divergent, with lim s,=+, 
0 N—> 0 

then it is not summable (III A) or (III B) with finite Sum; hence part (2) of 

the conditions of consistency is satisfied. 

Equation (a) of § 9 becomes in this case: 

(a) Safe (n, p) = (%— K) hy (n, p) + K {fo(n, p) — fin (n, Dp) 3 

{n]—1 

+ 2 Ms Un, Dib fen Cre, Dy 
v=m+ 

where h, (n, Pp) = fy (n, Pp) Seth (n, Dp): 

From conditions 4°, 6°, we have 

lim lim hy (n,p)=0, limlimfo(n,p) =1, lmlimf, (n, p) =0. 
p> n> pn 1 > 0 D> O ND 

Hence 

[n]-—1 

(b) lim lim tf (n,p) = K+ lim lim > thy (n, Pp) 
pa on—>n v= pH I—>H V=M+1 

+ lim lim Stn] fin} (n, Dp) . 
p—>n n—>0 

But since r, > 0, hy (n, p) > O (by 2°), 8m) > 0, fin) (n, p) > 0, the last 
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two terms on the right in (0) are positive, so that 

[n] 
lim lim >) a fp (n, p) > K. 
p—>o N—> wo v=0 

Hence = a, is not summable (III A) with finite Sum. 

Again, from conditions 5°, 7°, we have 

lim h,(n,p)=0, lim fo(n, p) = 1, lm fm (nm, p) = 0. 
Nn, Po n, p> Nn, Po 

F F F 

Also 
[nj—1 

lim DS Tele. B04 lim Sin ting ts DP) 22105 
nN, Pie v=m-+1 Nn, Pg 

hence 
[n] 

lim > Nastetn, pe we. 
N, PO y— agit o=0 

and therefore 2 a, is not summable (III B) with finite Sum. 

30. THEorEM 18. If >) a (uw) is uniformly summable (III A) or (III B) 
0 

with respect to u in an interval (a, b) with Sum S (u), and of the terms ay (uv) 

are continuous functions of u in (a, 6), then S (uw) ts continuous in (a, b). 

The proof of the part of the theorem relating to the method (III A) is 

precisely similar to that of Theorem 12. 

To prove the other part, put 

[7] 
2 a (u) fo (wu, p) = Snr,» (u), 

then S,, » (w) approaches its limit 

lim ‘SS, > (u) = 8 (a) 
ope 

uniformly with respect to win (a, 0), so that 

€ (a) |S (u) — Sas (W1<8 
for every u in (a,b), if n, p are so chosen (satisfying the relation F'(n, p)=0) 

that the corresponding point (n, p) is sufficiently far along the path F. 

Writing 

|S(u+th)—S(u)| Z|S(uth) — Sy,» (ut h) | 

Sa Cem Was SOO Wr | SE RUQ IM ces SY Cb 

the first and last terms on the right are, by (a), each < €/ 3 for proper choice 
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of n, p, and the second term can be made < €/ 3 by taking | h| < 6; hence 

|S(u+th)—S(u)|<e for |h| < 6, 

and our theorem follows. 

31. TuzorEeM 19. If the series >) ay (uw) is uniformly summable (III A) or 
0 

(III B) with respect to u in (a, b), with Sum S (u), and af the terms a, (uw) 

are integrable, then the series obtained by integrating the given series term by term 

with respect to wu over a range (¢1, C2) included in (a, b) is summable (III A) 

or (III B) respectively, with Sum if 's (u) du. 

The proof of the part referring to (III A) is the same as that of Theorem 13. 
To prove the other part, let us write 

S (u) = Sn, p (u) + bn, vp (u), 

where 6,, » (wv) approaches its limit 

lim dn, p (wv) = 0 
n, po 

uniformly with respect to win (a,b). 

(a) c.f 8(u) du= f° Sq, p(w) dut ["., 9 (u) du, 
and ; i io : 

(b) i) Ss, (u)du= 2 fe (np) f a, (uw) du. 

By properly choosing n, p, we can make 

: Hopi n Celie 
for every u in (a, b); 

Pon.» (w) aul & [14s p(w) II dul < Sheet.) 

for n, p properly chosen. 

lim | &, »(u)du=0, 
N, P>O vc) 

F 

and 
[a C2 Ca 

lim oor (n, p) J ay (u) du = if S (uw) du. 
lh ead Cy C1 

32. THEorEM 20. If >) ay (w) is swmmable (III A) or (III B) with Sum 
0 

S (uw), and if the series >) a, (wu) obtained by term by term differentiation of the 
0 
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gwen series is uniformly summable (III A) or (III B) habitual with Sum 

o (uw), then 

d 
a2) = nS (wu). 

The proof is the same as that of § 12. 

Case IV. 

33, Let f, (2) be defined for all positive values of 2 and for all positive 

integral values of v, including 0. 

Suppose also that f, (2) satisfies the following conditions: 

1. Facey o> v0 for every v, 2; 

BF lim f, (2) = 0 for » fixed; 
L—> 00 

oh De fy (x) is convergent for every 2, and 
0 

lim See itl Bi 
z—>o v=0 

The limit (12) cannot be used for the summation of non-convergent series 

(nor even for convergent series), for by 2°, 

lim ew Ca) c= 0) 
r—>o v=0 

and therefore 

(12’) lim lim Se (x) =0, 
I> ZO V=0 

When the limit (13) exists and is equal to S, 

(13’) lim lim Df Canis 4Sis 
Z—>0 N—> © v=0 

we shall say that the series 2 a, is swmmable (IV) with Sum S. 

34. THEOREM 21. If the series >) dy is convergent, with sum s, then 
0 

lim lim D8 f (x) = 8; 
r—> 0 No v=0 

that 1s, every convergent series 1s summable (IV) with Sum equal to sum, so thta 

part (1) of the conditions of consistency rs satisfied. 

Put . 

Sn = st h,, where lim 6, = 0. 
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Then 

2 50 fy (2) = De fo(@) + Lb fe (2). 

By 3°, 

lim lim >> f, (a) = 1, 
20 n> wo v=0 

so that 

lim lim 2 se fo(2) =s+ lim lim 8, fy (x). 
' r—> 0 2-0 V=0 > ON—>oO V=0 

Since 
limon -=-(); 
rm— oe 

we can find m such that | 6, | < € forv>™m. 
Now 

(#)|< 2] b| fo (x), 

Z Dl i | ay (2) + lal of (a); 

and f 

lel f(a) <e De fel(z) <eXf (2), 

LL Be Lf (@) < Dl bel fe (2) +e fe (2). 
Now since 

lino}, G%,)-=="0 
r—> 0 

for v finite, 

lim ay (x) = 1, 
> 

and since e can be taken as small as we please, we have 

lim lim 8, fo (z) = v 
to n—>w v=0 

We have then 

lim lim > s,f, (x) = 8. 
to 2m > v=0 

35. THEOREM 22. If >) a, is properly divergent, so that 
0 

lims,=+o, 
zn 

then 

lim lim >0s, fp (a) = + ©; 
I—>0o n—>o v=0 

then part (2) of the conditions of consistency is satisfied. 
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As before, we can put s, = K+ 7, for v > m, tr > 0, where K is an ar- 

bitrarily large number. Then 

Lasofo(t) = Lisofo(t)+K De fo(w)+ Ds tof (2) 

= 2a (%— K)f(@)+K Vfo(e)+ 2s tofo (a). 
Since 

lim f, (a) = 0, lim lim Df, (2) =1, n>O0, f,(x)>0, 
r—>oO ran >w 0 

we have 

n 

lim eee =K+lim lim >) nf,(z)>K. 
Io 2 > v=0 I> eo 2 > V=m+1 

36. THEoREM 23. [If the series ), a, (u) is uniformly convergent in a closed 
0 

interval (a, b), with sum s (uw), then >) 8, (u) fy (2) approaches its repeated 
v=0 

double limit 

lim lim Sh (uw) fo (%) = 8 (u) 
>On HO v=0 

uniformly with respect to u in (a, 6); that 1s, a uniformly convergent series 1s 

also uniformly summable (IV), and part (8) of the conditions of consistency is 
satisfied. 

Write 

Sn (u) = 8(u) + On (u), 

then we can find m such that for n > m, 

(a) | dn (u) | <eé 

for every wu in (a, 6b). 

(b) Dos (u) fo (w) = 8 (u) Life (e) + Lb (u) fe (x). 

Now by 3°, > fy (x) is convergent for all values of x, so that if we denote its 
0 

sum by F (2), we can find N such that for n > N and for z fixed, 

<e€. F(z) - Dhl) 

Then for any fixed wu in (a, b), we have 

F(z) -8(u)— (uw) Sh (@) <e|s(u)| (n>WN). 
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Now since s(u) is the sum of a series uniformly convergent in the closed 

interval (a, b),|s(w)| must have a finite upper bound, say K, in (a, 6); 

hence 

F(a) -s(u)—s(u) fi (#)|<K-« 
0 

for n > N and for every win (a,6). Therefore s (uw) >. fy (a) approaches 
0 

its limit s (w) - F (x) uniformly with respect to win (a,b) asn7o. 

Again, since by 3°, lim F (x) = 1, we can find X such that for z> X, 
r— co 

|F(a#)—1|<e. 

For any fixed wu in (a, 6), we then have 

|F(2)-s(u)—s(u)|<els(u)| for «> X; 
therefore 

|F(2)s(u)—s(u)|<Ke 

for « > X and for every wu in (a, b). Hence F (x) s(w) approaches its 

limit s (w) uniformly with respect to wu in (a,b) astm. 

Referring to our definition (§ 20), we see that s(w) >-f, (2) approaches 
0 

its repeated double limit 

lim lim s (w) Df, (zt) =8(u) 
n—> 0 2—>00 

uniformly with respect to u in (a, b). 

We have next to show that OD) 5, (u) fy (2) approaches its repeated double 

limit 
lim lim 5, (u) fo (2%) = 0 
a >an—>o 0 

uniformly with respect to wu in (a, b). 

We have 

D8 (1) fo (2) — Db (4) fo (2) SD | be (u) [fe (2). 
By (a), 

D | 8 (uw) | fo (a) < edi fe (x) < e Life (x) a Life (x) 
m+1 

for every uin (a,b). But De fo (x) is convergent for every x, so that 
0 

F(a) = Df. (2) 
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is bounded for all values of x, and if G be the upper bound of F (x), we have 

Dl (w) [fh (2) < Ge 
for every win (a,b). 

ste 38s (11) fo (2) — Dobe (11) f Cae) tte 

for every win(a,b). Hence >, 6, (u) fy (x) approaches its limit, as n > © , 
0 

uniformly with respect to wu in (a, b). 

We must now show that >. 4, (w) f, (x) approaches its limit 0, asx —> ©, 
0 

uniformly with respect towin (a,b). mis now fixed. Since 

lim'f, (2) =:0; 
Zz >7 

for every v, we can find X, such that for > X,, we have f, (x) < e; let X 

be the greatest of the finite set Xo, X1, ---, Xm, then we have each f, (x) < ¢ 

fore X (2) = "0 hie aa yin 

Ka D8 (1) fe (x) Sha (u/s (2) <eD|& CHE for) Xe 

Now 6, (w) is bounded in (a, b), so that >) | 6, (w)| has a finite upper 
0 

bound, call it H. Then 

36, (ab) fy hie veo e 

for « > X and for every u in (a,b). Hence S ™ (wu) fy (x) approaches its 

limit 0, as ¢—> ©, uniformly with respect to i in (a, db). 

We have now shown that a 5, (uw) fy (a) approaches its repeated double 

limit 0 uniformly; and our riches is now proved. 

37. THEOREM 24. If Ya (wu) ws uniformly summable (IV) with respect 

to u in an interval (a, b), with Sum S (uw), and af its terms ay (wu) are con- 

tinuous in (a, 6) then S (uw) ts continuous in (a, b). 

The proof of this theorem can be carried through in the same way as that 

of § 23, the only difference being that here 8,, , (w) is expressed in terms of 8, 

instead of a, , but since s, (wv) isasum of a finite number of continuous functions, 

it follows that S,, - (wv) is here a continuous function of wu. 
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38. TuroreM 25. If dla, (wu) is uniformly summable (IV) with respect 
0 

towin (a,b), with Sum S (u), and of the terms a, (wu) are integrable, then the 

series obtained by integrating term by term the given series over a range (C1, C2) 

included in (a, b), 1s summable (IV) with Sum ii 'S (uw) du. 

Putting 

Sn,2 (U) = Dy 8 (uU) fo (2), Hepa (ub) = Sn (ae), 
0 ™— wo 

we have 

8. (w) = lim B85 (1) fol@) = Dose (14) f (2), 

so that the series >, 8, (w) fo (x) is uniformly convergent, and we can in- 
0 

tegrate term by term, and get 

oo ce ce 

Siew) [9 (u)du= JS, (w) du, 
a cy C1 

the series on the left being convergent. Hence 

lim lim Dife(x) fs (w)du= lim f “S.(u) du. 
cy tO ec} 2 ~ no v=0 

Since 

lim S3'( 14) = S)(w) 
r—>o 

and this approach is uniform with respect to wu, by the method used in § 24 

we can prove that 

lim Se(u)du= S (wu) du. 
PPO 

(a) oiitn lim Do fe (2) fs (u)du= [8 (w) du. 
20 No v=0 Cy C1 

To prove that the series >, i } a, (wu) du is summable (IV) with Sum 
0 Cy 

f S(u) du, we must show that 

Hey Siaeh Sas : ay (w) du f fe (a) = 8 (u)du. 
I> N—>H v=0 * p=0 ec) 1 

But 
” C2 C2 ] C2 

>D ay (u)du= { Na. (u) }du= f s (w) du, 
p=0 Vy C1 p=0 aT 

and hence by (a), our theorem follows at once. 
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39. THEoREM 26. If > a, (u) is summable (IV) with Sum S (u), and if 
0 

the series >, a, (u) obtained by term by term differentiation of the given series is 
0 

uniformly summable (IV) with Sum o (u), then 

o(u)= £ S (wu). 

The proof is precisely the same as that of Theorem 14. 

40. Reviewing the general results obtained, we see that the conditions of 

consistency are satisfied by all four of our general methods of summation 

(I1)-(IV); and that uniformly summable series possess properties similar to 

those of uniformly convergent series. 



CHAPTER III. 

PartTIcuLAR METHODS. 

A number of particular known methods of summation are included as special 

cases under our methods (I)-(IV), and we shall now apply our general theorems 

to these. 
Case I. 

Cestro’s Method. 

41. Let the function f, (n, k) be defined for all positive values of n, for 

v=1,2,---,[m], and for every real k except negative integral values, by 

the equation 

Rese n(n—1)(n—2)---(n—v+1) 

RO cnstn) (u-hael) (ke me) (Rn oe 1)? 
and for v = 0, let fo(n,k) = 1, for v>n, let fy(n,k) = 0. We shall 

call this the Cesaro function, and denote it by Cf, (n, k). 

We must first show that Cf, (n, k&) satisfies the conditions of § 6. 

It is easily seen that 3° and 4° are true for every k; also that 1° is true if 

k> 0, but ifk<Oandn> |k|, then 

; Cintuy hs): 
Since 

Cfer(n ky ine 

Cf,(n,k) k+n—0’ 

this ratio is < 1 if k > 0, and is > 1 if k < 0 and n is sufficiently large, so 

that the sequence (Cf,) is decreasing for k > 0 and increasing for k < 0 

and n large enough; 2° is then true fork > 0. We shall not consider values 
Olvera 0» 

It remains only to show that 5° is satisfied. For CEsARo’s method it is 

sufficient to give n only positive integral values. We need then only prove 

that 

lim Cf, (n,k) =0. 
m2 

We have* 

nink 
ee rr eer rere iT ( ef} i, (b--n)(k+m—1)-(k+1) OT?) 

* See Nigeusen, Lehrbuch der unendlichen Reihen, p. 248. 

35 
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where 
limT, (kA+1)=T(k+1). 
n—o 

n! 

Ces india Ch aR.) 

“lim Cf, (n, k) = 0. 
N—> 0 

CF es rT) RUAN Gi cls ba) 

When a series = a, is summable (I) with the Cesaro function Cf, (n, k), 

it is usual to say that the series is swmmable (C, k): 

The corresponding summation formula is 

ae Rut ae n(n—1)+++(n—v+1) 

00) 8 Ree ean) (ken = Ore ae 
‘42. The Theorems 1-3 give us the following results: 

THEOREM 27. Every convergent series is summable (C, k) for everyk > 0, 

with a Sum equal to its sum. 

This theorem has been proved by CHAPMAN.} 

THEOREM 28. A properly divergent series 1s not summable (C, k) with 

finite Sum for any value of k > 0. 

This theorem is new; it has been proved when k is a positive integer, however, 

by NIELSEN. t 

THEOREM 29. A uniformly convergent series 1s uniformly summable (C, kh) 

fork > 0. . 

This has been proved by CHAPMAN.$ 

Riesz’s Method. 

43. Let the function f, (n, k) be defined for every positive value of n, for 

every real k, andforv=1,2,---,[n], by the equation 

ONG: (17) fa (mk) = {1 Stef 

where \ (7) is a positive monotonic function of n, increasing to © with n; 

for v = 0, let 

fo (n, k) = 1, 

for this we must assume that \ (0) = 0; and for» > n, let 

to (2 sepa. 

We shall call this the Riesz function, and denote it by Rf, (n, k). 

* When k is a positive integer, this is the definition given by CrsAro (Bulletin des sciences 

math., ser. 2, Vol. 14 (1890), pp. 114-120). When k is any real number > — 1, the method 

has been discussed by Cuapman (Proc. London Math. Soc., ser. 2, Vol. 9 (1911), pp. 369-409), 

and by Knopp (Sitzwngsberichte der Berliner Math. Gesell., Vol. 7 (1907), pp. 1-12). 

+ Proc. Lond. Math. Soc., ser. 2, Vol. 9 (1911), p. 377. 

¢t Nie.tsen, Elemente der Funktionentheorie (1911), pp. 194-5. 
§ Quarterly Journ. of Math., Vol. 48, pp. 24-25. 
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It follows at once from the definition that conditions 1°-4° of § 6 are satis- 

fied when k > 0. 

We shall suppose further that \ (7) satisfies the condition: 

Cutt L 

a need CSM 
then it follows that 

pe WGN bbe. 
me SCENT, 

and 

: A([n]) I Ms 
lin {1 —ay 7% 

so that condition 5° of § 6 is satisfied for k > 0. 
When a series is summable (I) with the Riesz function Rf, (n, k), Harpy 

and CHAPMAN call it swmmable (R,X, k).* The corresponding summation 

formula is 

Sprints X(v) |* 

‘ae § = lim Da {1— poe} 

44, The Theorems 1-3 applied to this method give: 

THEOREM 30. A convergent series 1s summable (R,d, k) for every k > 0, 

with Sum equal to sum, if satisfies the condition (18). 

This is proved by CHAPMAN and RIEsz. 

THEOREM 31. A properly divergent series cannot be summable (R, 2, k), 

for any k > 0, with finite Sum, if d satisfies (18). 

This result is new. 

THEOREM 32. A uniformly convergent series is uniformly summable 

(R,r,k) for every k > 0, uf d satisfies (18). 

This theorem is also new. 

Case II. 

LeRoy’s Method. 

45. Let the function f, (t) be defined for all positive integral values of 2, 

including 0, and for all values of ¢ such that 0 < t < 1, by the equation 

IT (vt +1) 

T(ot+1)° 

We shall consider it for values of ¢ near 1. We call it the LeRoy function 

and denote it by Lf, (¢). 

This function is positive for all values of v, ¢ under consideration, and since 

*See Cuapman, Proc. Lond. Math. Soc., ser. 2, Vol. 9 (1911), p. 373. 

(20) fo (t) = 
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I’ (a) increases as x increases, for x > 1.462 ---*, we have 

Lf, (t) < 1. 

lim LF, (#) = 1, 
to 1 

Also 

and 
Lfo (t) =]. 

That the sequence Lf), Lf, ---, Lf,, «++ is decreasing may be shown 
as follows: 

ik 1 
(a) Lfui(t) — Lf, (t) = Ronee 

_PQt+t+1) Ttt+1) 
CT GS Vi ean 

= egy (Eh (wt 148) — (+1) P(t + 1}. 
Now 

ioe) 

P(t+it+t)=f Diabet tk BRANT re ah r(tt+i)= Cr haat 
0 0 

By integration by parts, we get 

fe grttt dy = — emt yrttt oe (vt + t) fe griti-1 ads 

or 

f e* grttt dy = t(y+ 1 f adie chs a oR 
0 0 

“Dt titl) =t(o+1) PF (vtt+t) < (o+1)T (t+), sincet<1. 

But [ (vt +t) < I (vt +1), hence 

(b) T(t titi1) —(o+1)T (t4+1) <0. 

From (a) and (6), we see that Lf, decreases as v increases. 

We shall next show that 

lim pS Clea 0 
noe LUE a ine, 

By Strruine’s formula,j we have 

Pent Le ee 

( T (nt +1) ent nth Qa _ 
riers wi Cr aa OCIA AGES SESS = NY bE PRR DITO CRIA SU LL 

nao e ™! (nt)ntts Von D(a) 

* See the graph of (x) in Kein, Hypergeometrische Funktion, p. 122, or GopErroy, 
Théorie élémentaire des séries, p. 250. 

t+ See Bromwicu, Theory of Infinite Series, p. 462. 

’ 



THEORY OF SUMMABLE DIVERGENT SERIES. 39 

or 

(a) i T (nt + 1) en" + nt i 
a ARCA erer oss ecaeee (Co aT Ear oR RS Roe A 

aR TAG) Gee Cia Noir ha aa rae 
Now 

e™n" nt St) nr -t) z—nt =— p—n(l—t)+n(1—2t) log n—nt log t 
eont mnt tnt n? 

= ei-)n log n—n[(1—t)+¢# log #] 

But since t < 1, 

(b) lim eA-)n log n—n[1—t+¢# log t] — ee oO, 

no 

From (a) and (0), we see that we must have 

im LAM 1) _ 9 

wee UL) cr ck 
Then 

lim lim Lf, (t) = 0. 
t—>1 n—> 0 

—1/x If we now make the change of variable t = e~"”, we get a function of z: 

T (ve*” + 1) 
Lf, (a) = ome aNT ne 

which satisfies all the conditions of § 13. 
When a series is summable (II) with the LeRoy function Lf, (2), we shall 

say that the series is swmmable (L). The corresponding summation formula 

is 
wei Seng kt 8b cL) 

ae iat esses ne EET) 
This definition is one used by LERoy.* 

46. When we apply the general Theorems 7, 8 to this method, we have the 

theorems: 

THEOREM 33. A convergent series 1s summable (L) with Sum equal to sum. 

This was proved by Harpy. f 

THEOREM 34. A properly divergent series 1s not summable (L) with finite 

Sum. 

This result is new. 

Borel’s Method. 

47. Let the function f, (a2) be defined for all positive values of x, and for 

every positive integral value of v, including 0, by the equation 

% a” 

(22) Bie Cx) -{ e* — da. 
P v! 

* Annales de Toulouse, ser. 2, Vol. 2 (1900), pp. 323-327. 

T Quarterly Journ. of Math., Vol. 35 (1903), pp. 36-37. 
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This function is always positive; and since the integrand is positive, we have 

x eo 

i catda< [ ea’ da=! 
0 0 

so that Bf, (2) < 1 for every v, x. Thus condition 1° of § 18 is satisfied. 

By integration by parts, we find 

ta etda= —e*at+ (ot i)f a’ da, 

1 ig ent gett Lee, 
0 eet SAE oa es OL at LL Die eee $y —a2 Semen | a’t! da —<aital ¢ a’ da, 

or 
goth 

Bigeye (1) — Bf. (e) =— CA a 

The right hand member of this equation is always negative, so that as v 
increases, Bf, (x) decreases, and 2° is satisfied. 

We have at once 

lim ‘Bye = 1 
t—> 00 

and 3° is satisfied. 

That 4° is satisfied, may be shown as follows: 

We first seek the limit 
‘i [64 

lim oT 

n> n 

STIRLING’S formula gives us g 

f n! 
hm ore ee 
no eo” nrtt V 29 

Now 

a” en” nt Vr a” 

nl n | en" nt 27’ 

so that 

Cy On A a” 
(a) limiss = line oe 

nol: noe ™ rts V 24 

We have 

an N AN p—n—s n+n log a—(n+4) log n nli+ log al—(n+4) log n on" net cae ae, Se UN A ea ue = . 

But 

° ' jee 1 lim ent log a)—(n+3) logn — 0 ; 

No 

AOU 0 as 
(b) oy Timea) 

nm >o 
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We can then find N such that a®/n!<eforn>WN. 

el eda <e [ e*da=e(l1—e7) forn > N. 
0 ® 0 

. lim e* — da = 0, 
nn dJ/0 * 

and 
lim lim Bf, (x) = 0, 
zo no 

so that 4° is satisfied. 

All the conditions of § 13 are therefore satisfied by Borru’s function. 

The summation formula for this method is 

S = limlim oa, - f e*~ da 
Z—> 20 Nw v=0 

= lim lim (La) da. 
Io No e/0 

If the series >, ay a” / v ! defines an integral function, or if it defines an analytic 
0 

function which is susceptible of analytic continuation along the real axis, and 

therefore has no singular points on the real axis, we get 

S = lim (Xa) da. 
rope Nas i! zZ—>wo /0 

(23) eee || (Das) de. 
0 0 Vv: 

This is Boret’s famous integral definition.* When a series is summable (II) 

with Borev’s function f, (7), that is, when the integral (23) is convergent, 

we say that the series is swmmable (Be). 

48. We find, by applying Theorems 7 and 8, the results: 

THEOREM 35. A convergent series is summable (B,) with Sum equal to sum. 

This was proved by Harpy.t 

THEOREM 36. A properly divergent series is not summable (Bz) with finite 

Sum. 

This is proved in BRromwicu, Theory of Infinite Series, p. 270. 

Euler’s Power Series Method. 

49, The function 

(24) {Cee ? 

evidently satisfies the conditions 1°-4° of § 13. 

*See Borst, Lecons sur les séries divergentes, p. 99. 
} Cambridge Philos. Transactions, Vol. 19, pp. 298-299. 
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Our summation formula here is 

S = lim lim iia. e ®, 
: r—AaN>o 0 

If we put e * = 2, it becomes 

(25) SS line, 2". 
z—>1 0 

This is sometimes called EULER’s power series method. 

Theorem 7 applied to this case gives ABEL’s theorem on the continuity of 

power series. 

Case ITI. 

The CrsAro-RiEsz methods* appear here as a special case. 

50. Let the function f, (n, p) be defined for all positive values of n, p, 

and for 

Di Oy di Diy rst LNs 

by the equation 
A(n 

AC) hy D =| ih (26). Aan) = |g 
where \ (7) is a positive monotonic function increasing to © with n, and 

satisfying the conditions \ (0) = 0 and 

lim A(n— 1) =] 

n>a (1) 

It is easily seen that conditions 1°, 2°, and the first part of 3° of § 26 are 

satisfied. Harpy and CHAPMAN{ have shown that the second part of 3° 

is satisfied. 

Since 
A(n) 

lim {1 Ae) \ saa: 
No r (n) 

we have 
lim lim f, (n, p) = 1, 
po nw 

so that 4° is satisfied. 

Since 
. A(n—1) 

lim ————- = 1, 
bows eA, 

and\(n) > © asn > ©, we have 

| ACLaD 
lim {1 MG re 

so that 6° is true. 

* Called thus by Harpy and Cuapman, Quarterly Journ. of Math., Vol. 42, p. 191. 

t Quarterly Journ. of Math., Vol. 42, p. 204. 
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Now suppose that the path F is defined by the relation 

MM) s(n), where lim w(m) is finite; 
p N> 

then s 
A(n 

' —— w(n) 
wlim {1-203 } = lim {1—* ane Aah) 

d (n) n—> 

(v 
d ( 

ie (In]) \> _ d(Lm]) Joo 
jim j1—> x(n) = tim {1-22 X (2) ra 

Thus 5° and 7° are also satisfied. 

When a series is summable (III A) with the Cesadro-Riesz function, we shall 

call it swmmable (CR, 2), and when it is summable (III B) and the path 

F is given by the function w (7), we shall call it swmmable (CR, Xr, w). 

51. From Theorems 15 and 17, we have: 

THEOREM 37. A convergent series is summable (CR, X)* with Sum equal 
to sum. 

This theorem is new. 

THEOREM 38. A convergent series 1s summable (CR, 2, w) for every path 

F (as described in § 50), with Sum equal to sum. 

This was proved by Harpy and CHAPMAN.} 

THEOREM 39. A properly divergent series 1s not summable (CR, dX) nor 

(CR,X,w). 

This result is new. 

Case IV. 
52. Let us take first 

(27) fo (@) = e*: 

We have at once f, (x) > 0, 
lim f, (7) = 0, 
ro 

Hd 

ol’ 

co) o x 

Lif(mse* Dae? = 1; 
0 o Uv: 

so that conditions 1°, 2°, 3°, of § 33 are all satisfied. The corresponding sum- 

mation formula is 

(28) Si= lim ¢” a pie oT? 
2 > 0 v=0 

which is BorEv’s exponential definition.t{ 

When a series is summable (IV) with BorEt’s function (27), we shall say 

that it is swmmable ( B,). 

* Where X satisfies the conditions of § 50. 

+ Quarterly Journ. of Math., Vol. 42, p. 204. 

t See Borst, Lecons sur les séries divergentes, p. 97. 
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More generally, take 

(29) fo(a)=e*- 
vk 

vl 5] 

where k is a positive integer; this can be shown to satisfy the conditions of 

§ 33 just as for (27). When a series is summable (IV) with Borev’s function 

(29), we shall call it swmmable (B3,k). When k = 1, we have summability 

(B,). The summation formula is 

(30) = lime“ os, 
0 

This is BorEw’s generalization of his exponential method.* 

If we take 
Vx 

(31) BG) atte 

it is easily shown that this function satisfies the conditions of § 33. The 

resulting method is one studied by CosTABEL.t 
eo 

Still more generally, let @ (a) be an integral function > cn a”, where 
0 

Cy) Lake 

(32) yee o (x) 
This function satisfies the conditions of §33, and includes all the preceding 

functions of this §. 

53. Applying Theorems 21, 22 to BorEL’s methods, we have: 

THEOREM 40. A convergent series is summable (B,) with Sum equal to sum. 

This is proved in VIvANTI-GuTZMER, Theorie der eindeutigen analytischen 

Funktionen, pp. 328-9. 

THEOREM 41. A properly divergent series is not summable ( By) with finite Sum. 

This also is given in VIVANTI-GUTZMER, p. 329. 

THEOREM 42. <A convergent series 1s summable (B3, k) with Sum equal to 

sum for every k. 

This result is proved in Bromwicu, Theory of Infinite Series, pp. 300-301. 

THEOREM 43. A properly divergent series 1s not summable (Bs, k) with 

finite Sum, for any k. 

This is new. 

54. The general theorems of Chapter II on the uniform summability of 

uniformly convergent series, and the continuity, integration, and differentia- 

tion by uniformly summable series apply of course to the particular methods of 

this chapter, but as all the results so obtained are new, they have not been 

stated explicitly. 

Cote 

* See Borex, Lecons sur les séries divergentes, p. 129. 
{ L’ Enseignement mathématique, Vol. 10 (1908), pp. 387-388. 
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